The Undecidability of Second Order Multiplicative Linear Logic

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Undecidability of Second Order Multiplicative Linear Logic

The multiplicative fragment of second order propositional linear logic is shown to be undecidable.

متن کامل

The Undecidability of Second Order Linear Logic Without Exponentials

Recently, Lincoln, Scedrov and Shankar showed that the multi-plicative fragment of second order intuitionistic linear logic is undecidable, using an encoding of second order intuitionistic logic. Their argument applies to the multiplicative-additive fragment, but it does not work in the classical case, because second order classical logic is decidable. Here we show that the multiplicative-addit...

متن کامل

Undecidability of Multiplicative Subexponential Logic

Subexponential logic is a variant of linear logic with a family of exponential connectives—called subexponentials—that are indexed and arranged in a pre-order. Each subexponential has or lacks associated structural properties of weakening and contraction. We show that classical propositional multiplicative linear logic extended with one unrestricted and two incomparable linear subexponentials c...

متن کامل

Some Observations on the Proof Theory of Second Order Propositional Multiplicative Linear Logic

We investigate the question of what constitutes a proof when quantifiers and multiplicative units are both present. On the technical level this paper provides two new aspects of the proof theory of MLL2 with units. First, we give a novel proof system in the framework of the calculus of structures. The main feature of the new system is the consequent use of deep inference, which allows us to obs...

متن کامل

On the Undecidability of Second-order Uniication

There is a close relationship between word uniication and second-order uniication (SOU). This similarity has been exploited, for instance, for proving decidability of monadic SOU, and decidability of linear SOU when no variable occurs more than twice. Trying to prove this second result for (nonlinear) SOU, we found a simple reduction between this problem and the simultaneous rigid E-uniication ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 1996

ISSN: 0890-5401

DOI: 10.1006/inco.1996.0019